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Abstract

Machine learning is a popular technology widely used to solve a lot of prob-

lems in various areas in recent decades. In this work, we applied machine

learning techniques to the problems of medical image analysis, especially

cervigram image analysis. Combined with techniques developed in computer

vision, we represent cervigram image data in the form of a combination of

texture feature vector and color feature vector. We treat the task of detect-

ing Cervical Intraepithelial Neoplasia (CIN) level as a classification problem

in the view of machine learning and apply several popular machine learning

classifiers to predict the categories. Furthermore, under receiver operating

characteristic (ROC) curve as our performance measure, we do a compre-

hensive comparison among seven machine learning classification algorithms

to see which ones might be suitable models for this kind of problems. From

our experiments, we conjecture that the machine learning techniques can be

a useful tool and ensemble-tree based models like Random Forest, Gradient

Boosting Decision Tree and Adaboost outperform other algorithms for this

task.
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Chapter 1

Introduction

Machine learning is an idea of leading a system to automatically learn how

to solve a specific problem better from some collection of given experience.

This idea becomes one of the most popular tools in the area of AI in recent

decades. When human beings expect the computer to solve more and more

complicated problems, we find it is too hard to manually construct the e↵ec-

tive programs for the computers. Even for some problems, we have few ideas

of how to solve them by ourselves. The machine learning ideas is a very at-

tractive alternative. It has spread rapidly throughout computer science and

beyond. Besides AI, Machine learning is widely used in Web search, spam

filters, recommender systems, ad placement, credit scoring, fraud detection,

2
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stock trading, drug design, medical image processing and many other appli-

cations. A recent report from the McKinsey Global Institute asserts that

machine learning (a.k.a. data mining or predictive analytics) will be the

driver of the next big wave of innovation [1].

In order to make a good application of machine learning to some specific

problems we are interested in, it is important to study carefully about the

theory of machine learning. Although a lot of machine learning algorithms

has been designed as o↵-the-shelf tools, machine learning should never be

regarded as a magic. There is no universal perfect machine learning for any

tasks. Machine learning is more like a knowledge lever. We need carefully

represent our knowledge about the specific problem for the computer and

design a corresponding suitable machine learning model or algorithm.

Machine learning problem can be broadly classified into two categories,

supervised learning and unsupervised learning, depending on whether the

label information is provided in the dataset. The supervised learning means

that some label information are included in the data set and the machine

learning model is required to make prediction on the label values for some

unseen data. Classification and regression are two most common tasks in the

category of supervised learning problems. Unlike the supervised learning, the

3
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unsupervised learning is referred to a problems with data set without any

label information available. The machine learning needs to find some mean-

ingful information automatically from the given data description. Clustering

analysis is a representation of the category of the unsupervised learning prob-

lems.

In our work, we care more about the supervised learning, especially those

classification problems. The classification problem is that given a data set

with label values in discrete space, the machine is asked to specify which of

some k possible categories the input belongs to. More formally, given a data

set X =
�
X(i)

 
N

i=1
where Xi 2 RD, which means each data sample X

i

is in

a D-dimensional feature space, and corresponding label values y =
�
y(i)

 
N

i=1
,

where y(i) 2 Z
k

, which means there are k choices of each label value y(i),

a classification learner, or called a classifier, can be viewed as a function

f : RD ! Zk, i.e. it returns an output value in the category space Zk for

each input sample in the data space RD.

Machine learning has been widely used to solve a lot of problems in various

areas. It is also a useful tool in medical image analysis. In our work, we

focus on analyzing the cervigram image with machine learning technologies.

It shows us its power to be a great assistance for computer aided diagnosis.

4
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Cervical cancer ranks as the second most common type of cancer in

women aged 15 to 44 years worldwide [2]. Among death cases caused by

cervical cancer, over 80% occurred in less developed regions. Therefore,

there is a need for lower cost and more automated screening methods for

early detection of cervical cancer, especially those applicable in low-resource

regions. Screening procedures can help prevent cervical cancer by detecting

cervical intraepithelial neoplasia (CIN), which is the potentially precancerous

change and abnormal growth of squamous cells on the surface of the cervix.

According to the WHO system [2], CIN is divided into three grades: CIN1

(mild), CIN2 (moderate), and CIN3 (severe). Lesions in CIN2/3+ require

treatment, whereas mild dysplasia in CIN1 only needs conservative observa-

tion because it will typically be cleared by an immune response in a year.

Thus, in clinical practice one important goal of screening is to di↵erentiate

CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ [3]).

The most widely used cervical cancer screening methods today include

the Pap test, HPV testing, and visual examination. Pap tests are e↵ective,

but su↵er from low sensitivity in detecting CIN 2/3+ [4]. Moreover, Pap

tests need a laboratory and trained personnel to evaluate the samples. The

sensitivity of HPV tests in detecting CIN 2/3+ lesions varies greatly [4].

5
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Colposcopy is a diagnostic procedure that often involves setting a biopsy.

Digital Cervicography, a non-invasive visual examination method that takes

a photograph of the cervix (called a cervigram) after the application of 5%

acetic acid to the cervix epithelium, has great potential to be a primary or

adjunctive screening tool in developing countries because of its low cost and

accessibility in resource-poor regions. However, one concern with Cervicogra-

phy is that the overall e↵ectiveness of Cervicography has been questioned by

reports of poor correlation between visual lesion recognition and high-grade

disease as well as disagreement among experts when grading visual findings.

To address the concern and investigate the feasibility of using images as

a screening method for cervical cancer, we conjecture that computer algo-

rithms can be developed to improve the accuracy in grading lesions using

visual (and image) information. This conjecture is inspired and encouraged

by recent successes in computer-assisted Pap tests such as the ThinPrep

Imaging System (TIS) [5], FocalPoint [6], and the work by Zhang et al. [7];

these computer-assisted Pap tests apply multi-feature Pap smear image clas-

sification using SVM and other machine learning algorithms, and they have

been shown to be statistically more sensitive than manual methods with

equivalent specificity.

6
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From the perspective of machine learning, here we have a classification

problem. Taking cervigram images as input, a machine learning model is

required to predict the corresponding CIN level. The raw image data is in

a quite high dimension. The information each pixel in an image can repre-

sent is limited, which is not suitable for applying traditional machine learn-

ing models directly. Fortunately, in the area of computer vision and image

processing, there are various mature technologies and tricks of extracting

generally meaningful information, or called features, from the image. As we

have mentioned before, the machine learning is like a lever of knowledge. It

should be designed to make fully use of existed experience and human beings’

knowledge. And these features extracted from the image just represent our

knowledge about the image and the task.

In our work, we applied several popular machine learning models on tex-

ture and color features extracted from a large set of cervigram images to do

the classification task. And we also do a comprehensive comparison on seven

machine learning algorithms to see which ones might be better choices for

this kind of problems. Our dataset consists of 345 positive samples and 767

negative samples. So it is an imbalanced dataset. Each sample is in a 2538

dimensional feature space that is composed with PLBP, PLAB and PHOG.

7
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We do our experiments on both the whole(imbalanced) dataset and balanced

dataset after downsampling.

The construction of the paper is as follows: In Chapter 2, we study the

theory of machine learning carefully, illustrate several important concepts

and problems in machine leaning techniques, and describe seven popular

machine learning classification models used in our work. In Chapter 3, we

delineate the problem of cervigram image analysis, describe the database we

construct and features we design for machine learning models. In Chapter 4,

we illustrate the experiments and results of applying seven machine learning

models described in Chapter 2 to the dataset delineated in Chapter 3. Finally,

some concluding remarks and pointers to future directions of our work are

provided in Chapter 7.

8
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Chapter 2

Machine Learning

Although a lot of machine learning algorithms has been designed as o↵-the-

shelf tools, machine learning should never be regarded as not a magic. There

is no universal perfect machine learning for any task. Machine learning is

more like a knowledge lever. We need carefully represent our knowledge about

the specific problem for the computer and design a corresponding suitable

machine learning model or algorithm.

2.1 What is machine learning?

Generally speaking, machine learning is an idea of letting a system to auto-

matically learn how to solve a specific problem better from some collection

9
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of given experience. Compared with the traditional strategy that human

beings design and construct programs manually for computers to solve some

specific problems, machine learning is an attractive alternative. The key

concept of the idea of machine learning is the learning ability or behavior of

the machine learning system. So the first question is what do we mean by

learning? There is a formal definition given in [8] that ”a computer program

is said to learn from experience E with respect to some class of tasks T and

performance measure P , if its performance at tasks in T , as measured by P

, improves with experience E.” For di↵erent kinds of task, performance mea-

sure and experience, there might be various machine learning algorithm. We

will introduce some important properties in machine learning models in gen-

eral. And then we will give introduction to seven popular machine learning

models used in our work later.

2.1.1 Experience

There are several kinds of format of the experience. However, since this

experience should be processed by computers, they should be in some format

of numerical values. Typically, the experience E is a dataset X = {x
i

}.

It is composed with a collection of observations x
i

. Each x
i

is a real-value

10
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vector in an D-dimentional space, i.e., x
i

2 RD. We call it feature space.

The data set can be composed with just raw data sample, like a picture

that is represented as an N ⇥ N pixel matrix. Or it might also consist of

data sample in some high-level feature space. And these high-level features

embody human beings’ knowledge about the data and the task.

2.1.2 Task

For a lot of tasks which are too complicated to solve with fixed programs

designed and written by human beings, machine learning is an e�cient alter-

native way to let computer to learn to deal with these tasks automatically.

There is nearly no limit on the types of task, as long as it can be transferred

by our human beings to a problem the machine can deal with. So from the

view of the computer, a machine learning task can be generally described

in the terms of how a machine learning system should produce outputs for

the inputs. The input data sample is often described in a numerical way.

We typically represent a sample as a vector x 2 RD where each entry x
i

of the vector can be another feature vector {x
i1 , xi2 , xi3 , . . .}. According to

the types of inputs and outputs, machine learning tasks can be classified in

di↵erent categories. One classifying strategy is composed with supervised

11
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learning and unsupervised learning, according to the situation whether there

is any label information included in the data set. The supervised learning

means there are label information included in the data set and the machine

learning model is required to make prediction on the label values for some

unseen data. Classification and regression are two most common tasks in

the category of supervised learning problems. The unsupervised learning is

referred to a problems with data set without any label information available.

The machine learning needs to find some meaningful information automati-

cally from the given data description. Clustering analysis is a representation

of the category of the unsupervised learning problems. Of course there are

tremendous other kinds of tasks and category strategies. Here we mainly

focus on supervised learning, especially classification problems, which is also

the machine learning task stuided most.

2.1.3 Performance Measure

A performance measure P is designed by human beings to evaluate the per-

formance of a machine learning system for a specific task. So the performance

measure P is task specific. For a task like classification, a straightforward

choice of performance measure is the accuracy, the proportion of of samples

12
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for which the machine learning model predicts correctly. Or equivalently,

we can also choose the error rate, which is just equal to 1 - accuracy. If

we set model’s correct prediction as 1 and incorrect prediction as 0, the ex-

pected accuracy score should be the expected probability of model’s correct

prediction.

Another widely used performance measure is the receiver operating char-

acteristic (ROC). If the output of a classification model can be viewed as a

probability with which the input should be classified as some category, the

roc analysis may be applied to get more useful information from the outcome.

For example, an optimal threshold other than 0.5 might be more reasonable

in application.

2.2 Generalization

It should be noticed that the ultimate target of a machine learning algorithm

is to give good performance on new, previously unseen inputs – not just those

on which the model was trained [9]. And this key ability to perform well on

previously unobserved inputs is called generalization.

Then one question might be asked is how could we a↵ect the performance

13
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of the machine learning model on unseen inputs, given the observed training

set only? The statistical learning theory provides some answers. There is a

set of assumptions called the i.i.d. assumptions. They say all the samples in

each dataset are independent from each other, and that the train set and test

set are identically distributed, drawn from the same probability distribution

as each other. We call this shared underlying distribution the data generating

distribution [9]. Under this assumption, we could see that for the training

set and test set sampled from the same data generating distribution, the

expected training score of the machine learning model should be the same as

the model’s test score. This help us build a bridge between the training score

and test score. In practice, when we apply a machine learning algorithm, we

do not fix the model ahead of time, then check its performance on both

training and test set. Typically, we first sample a training set, then use it

to find a model with lower training score, then sample the test set. Starting

from this point, the expected test score of a machine learning model is greater

than or equal to its expected training score. This fact actually helps us to

divide the performance of a machine learning model into two factors:

1. How could we improve the training score?

2. How could we make the gap between training score and test score as

14
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Figure 2.1: A general relation between training score and generalization score

small as possible?

A perfect machine learning model should hold both small training score

and small gap between training score and test score. But under a lot situ-

ation in practice, it is hard to find a perfect way to reduce these two scores

simultaneously. We often face a tradeo↵ between these two factors.

2.3 Underfitting and Overfitting

From the perspective of machine learner, there are two kinds of problems

related to the two factors mentioned about, Underfitting and Overfitting.

15
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Underfitting reveals the problem of our machine learning model that its

capacity is not powerful enough to deal with this specific task. It often

represents in the form that the model’s training score are not good enough

and the gap between training score and generalization score is often not too

large in the scale of training score. Overfitting reveals the problem that the

complixity of our machine learning model is beyond the complixity of the

task. It usually represents in the form that the model’s generalization score

are much worse than its training score. This means our model trained on the

training set captures meaningless information by mistake from the training

set and this kind of information is harmful for getting a good generalization

score on unseen dataset. This kinds of harmful information hid in training

set has many faces. Noise is one example.

So these are two important potential problems we can read from the

performance of the machine learning model on training set and test set. It

can help us diagnose our model. But the reason behind the phenomenon is

complicated. One way to understand it is from the statistical view.

For the performance score, mean square error (MSE), it is easy to get a

useful representation formation through some calculation in statistics.

MSE(✓̂) = bias2(✓̂) + var(✓̂) (2.1)

16
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✓̂ represents an estimator in statistics. In machine learning, it can be viewed

as our model’s parameters. What we hope is approaching to the true param-

eters of the underlying data generating distribution. The first term in the

above equation represents the bias of the estimator, which is a statistics rep-

resenting the di↵erence between the expectation value of our estimator and

a perfect estimator. The second term is called the variance of the estimator,

which is a statistics representing the uncertainty or stability of the estimator.

For a machine learning model, if we view our model as an estimator, then the

bias is a learners tendency to consistently learn the same wrong thing, which

is related to the training score of our model, and the variance is the tendency

to learn random things irrespective of the real signal, which is related to the

gap between the training score and generalization score.

2.4 No Free Lunch Theorem

However there is no universal trick that is able to reduce the bias and vari-

ance simultineously without more knowledge about the data. The reason is

given by the no free lunch theorem [10]. This theorem states that ”Any two

optimization algorithms are equivalent when their performance is averaged

17
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Figure 2.2: An illustration of bias and variance

across all possible problems”. In other words, no machine learning algorithm

is universally any better than any other, even the random guess. So we al-

ways need embody some knowledge or assumptions beyond the given data

to do meanful generalization beyond it. The i.i.d assumption we mentioned

about is one example. There is a quite good comment given in [11]:

”In retrospect, the need for knowledge in learning should not be surpris-

ing. Machine learning is not magic; it cant get something from nothing.

What it does is get more from less. Programming, like all engineering, is

a lot of work: we have to build everything from scratch. Learning is more

like farming, which lets nature do most of the work. Farmers combine seeds

with nutrients to grow crops. Learners combine knowledge with data to grow

18
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programs.”

2.5 Regularization

The no free lunch theorem seems rather depressing. But fortunately, the

problems we human beings care about are not uniformly distributed in the

mathematic-possible space. We can still do something meanful under reason-

albe assumptions. In fact, even very general assumptions are helpful enough

for the success of machine learning methods.

Back to the underfitting and overfitting problem we mentioned about.

Underfitting is usually not allowable. Because it means there is no way for

a model to get a good performance, since the problem is beyond its optimal

capacity of this model. And overfitting problem is usually easy to deal with.

We can add more params into our model to make it more complicated. So

typically we design a powerful enough model and have it trained on the

dataset. Then we need to find some ways to avoid overfitting. A common

idea is called regularization.

A more complicated model means a larger model searching space, which

is also called hypothesis space. It should be remembered that we do not fix a

19
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specific model for a machine learning system. We set a limit of the hypothesis

space and let our machine learning algorithm to search an optimal model in

the space. But there is no guarantee that an optimization algorithm used in

our machine learning system is able to find the best solution. And usually

it cannot. So one way we can do is to give some additional hints to the

algorithm to help it get larger chance of finding a better solution. This is the

idea of regularization. The regularization term can be viewed as a penalty on

our unpreferred solution. This means that if both solutions are eligible before

regularization, now one is preferred to another. The unpreferred solution may

only be chosen if it fits the training set significantly better than the preferred

solution.

2.6 Validation and Hyperparameter

One way to evaluate the generalization score of the machine learning model

is to use a technique called cross validation. The idea behind the cross val-

idation method is quite straightforward. Take a traditional 10-fold cross

validation as an example. The original dataset is evenly and randomly di-

vided into 10 folds. For each iteration of a overall 10 iterations of evaluation

20
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process, one fold is left aside. The machine learning is trained on the training

set composed with the remaining 9 folds of data and then evaluated on the

test set left aside ahead of time. After 10 iterations, we can get 10 generaliza-

tion scores. Usually we use the average score as the final generalization score

of our model on this dataset. The algorithm of cross validation is illustrated

in 1

Most machine learning algorithms have settings that we can use to control

the behavior of the learning algorithm. These settings are called hyperparam-

eters [9]. The values of hyperparameters are not optimized by the learning

algorithm itself (though we can design a nested learning procedure where

one learning algorithm learns the best hyperparameters for another learning

algorithm).

Sometimes a setting is chosen to be a hyperparameter that the learning

algorithm does not learn because it is di�cult to optimize. More frequently,

we do not learn the hyperparameter because it is not appropriate to learn

that hyperparameter on the training set. This applies to all hyperparame-

ters that control model’s capacity [9]. If learned on the training set, such

hyperparameters would always choose the maximum possible model capac-

ity, resulting in overfitting, like 2.2. We can always fit the training set better
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Algorithm 1 Cross Validation Algorithm

Define: xVal(X,A,L, k)

Require: X, the given dataset;

Require: A, a machine learning algorithm, take training dataset as input

and output a trained model f(X 0) ;

Require: L, a loss function, used to evaluate the performance of a trained

model f on some test set X 0;

Require: k, the given number of folds

Divide X into k mutually exclusive subsets X
i

, whose union is X.

for i from 1 to k do

f
i

 A(X �X
i

)

e
i

 L(f
i

, X
i

)

end for

return e
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Figure 2.3: An illustration of overfitting with too high degree in polynomial model

with a higher degree polynomial and a weight decay setting of � = 0.

To search a better hyperparameters setting, we can use a validation set

to evaluate choices of hyperparameter values. The idea is similar to cross

validation. We can do another cross validation in the inner loop with a

validation set separated from the training set. The algorithm of double cross

validation is illustrated in 2 This validation set plays a similar rule as the

test set in the outer loop. The di↵erence is the aim of outer loop of cross

validation is to evaluate the generalization score of our model, while the

inner cross validation in the inner loop is used to search a good setting of

hyperparameters.

These two techniques are widely used in a lot machine leanring training

and evaluation process. They are also used in our work.
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Algorithm 2 double Cross Validation Algorithm

Define: dxVal(X,A,L, k, d)

Require: X, the given dataset;

Require: A = {Aj}C
j=1, a set of machine learning algorithm with di↵er-

ent hyperparameter setting. Each Aj takes training dataset as input and

output a trained model f j(X 0) ;

Require: L, a loss function, used to evaluate the performance of a trained

model f on some test set X 0;

Require: k, the given number of folds in the outer loop

Require: d, the given number of folds in the inner loop

Define: A0(X 0):

for j from 1 to C do

e
j

= mean(kFoldXV (X 0, A
j

, L, d))

j?  argmin
j

e
j

end for

return xVal(X,A0, L, k, d)
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2.7 Classifiers

The supervised learning means there are label information included in the

data set and the machine learning model is required to make prediction on

the label values for some unseen data. If the label values are in a discrete

space (often a set of finit k possible choices), then it is called classification

problem. Otherwise, if the label values changes in a continuous space, we

call it a regression problem.

Here we mainly focus on the classification. The classification problem

is that given a data set with label values in discrete space, the machine is

asked to specify which of some k possible categories the input belongs to.

For example, given a group of weather indices in the past several days and

their corresponding weather records, a classification problem can be asking

the machine to predict tomorrow’s weather based on similiar weather indices.

Given a data set X =
�
X(i)

 
N

i=1
where Xi 2 RD, which means each

data sample X
i

is in a D-dimensional feature space, and corresponding label

values y =
�
y(i)

 
N

i=1
, where y(i) 2 Z

k

, which means there are k choices of

each label value y(i), a classification learner, or called a classifier, can be

viewed as a function f : RD ! Zk. The classifier is trained on (X, y) and

make prediction y0 on some unseen data X 0. The performance score of the
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classifier is evaluated by some loss function, like mean square error (MSE).

There is a special case that if there are only two choices in the label value

space y, i.e., k = 2 and y(i) 2 Z2 = {0, 1}, then this kind of task is called

binary classification problem.

Here we give an introduction in detail to several popular machine learning

classifiers. These classifiers are also applied in our work. Their performance

on our dataset will be shown later.

Adaboost

Adaboost is a boosting tree model. The original idea is straightforward.

It constructs a collection decision tree models iteratively on a collection of

boosting generated samples. Every sample is initialized with an equal weight.

A simple decision tree is built in the initial step. Then in each iteration, the

tree performance ↵
m

will be evaluated on the weight sum of misclassification.

err
m

=
NX

i=1

w
i

I{y
i

6= G
m

(x
i

)} (2.2)

↵
m

= log((1� err
m

)/ err
m

) (2.3)

where w
i

2 [0, 1] is the sample weight sum to one.

w
i

 w
i

· exp{↵
m

· I{y
i

6= G
m

(x
i

)} (2.4)
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According to the error score, each weight of misclassified sample will be

updated respectively by Eq. 2.4. This process has a natural explanation like

the learning process of our human beings. At first, we can learn simple parts

fast and directly. Then we will pay more and more attention to those hard

parts which we do not understand very well in the past.

In our experiments, to optimize hyper-parameters for AdaBoost, we search

the depth (d) of each decision tree in 1, 2, 3, 4 and the number of weak clas-

sifiers from 10 to the whole feature size with an increment of 120/d.

GBDT

Gradient boosting decision tree is another kind of additive boosting model

which in general can be expressed as Eq. 2.5

f(x) =
MX

m=1

�
m

b(x; �
m

) (2.5)

where b
m

are called expansion coe�cients, like weight of tree in each iteration,

and b(x; �
m

) are usually simple basic functions(e.g.: decision tree) character-

ized by parameters �
m

. Then the training target becomes Eq. 2.6[12]

min
{�m,�m}N1

MX

m=1

L(y
i

, f(x
i

)) (2.6)

where L(y
i

, f(x
i

)) is some loss function. For most loss functions, Eq. 2.6 is

a computationally intensive task. While it can be approximated by Forward
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stagewise modeling. The process is sequentially adding new basis functions

to the expansion without adjusting the parameters and coe�cients of those

that have already been added. It is outlined in Algorithm 3

Algorithm 3 Forward Stagewise Additive Modeling

1. Initialize f0(x) = 0.

2. For m = 1 to M:

a) Compute

argmin
�,�

P
M

m=1 L(yi, fm�1(xi

) + �b(x
i

; �)).

b) Set f
m

(x) = f
m�1(x) + �

m

b(x; �
m

)

The adaboost can be transferred to a specific instance of that with ex-

ponential loss function.The main idea of GBDT is using the gradient of loss

function as the addative step direction. Then build a tree approximating

the gradient descent e↵ect as the addative tree in each iteration. Unlike the

Adaboost, it provides more freedom on choosing loss functions for the addi-

tive boosting model, without losing much training speed. The algorithm is

outlined in Algorithm 4[12]

In our experiments, we optimize the hyper-parameters for GBDT by

searching the number of trees among 10, 100, 200, 500, 1000, 2000 and the
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Algorithm 4 Gradient Tree Boosting Algorithm

1. Initialize f0(x) = argmin
�

P
N

i=1 L(yi, ).

2. For m = 1 to M:

a) For i = 1, 2, . . . ., N compute:

r
im

= �
h
@L(yi,f(xi))

@f(xi)

i

f=fm�1

b) Fit a regression tree to the targets r
im

giving terminal regions R
jm

,

j = 1, 2, . . . ., J
m

.

c) For j = 1, 2, . . . ., J
m

compute

�
jm

= argmin
�

P
L(y

i

, f
m�1(xi

) + �).

d) Update f
m

(x) = f
m�1(x) +

P
Jm

j=1 �jmI(x 2 R
jm

).

3. Output f̂(x) = f
M

(x).
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learning rate in 1, 0.1, 0.01, 0.001, 0.0001.

Random Forest

Random forest is a quite popular machine learning method in recent years.

It has advantages like easy and fast training, being robust for overfitting

problem, competitive performance on di↵erent kind of data sets for di↵erent

matrices [13]. Random forest is a substantial modification of bagging that

builds a large collection of de-correlated trees, and then averages them[12].

Each classifier in the ensemble is a decision tree trained on a bootstrap sample

set of original data and when growing the tree, select a random subset of

attributes as candidates for splitting at each node. The algorithm is outlined

in Algorithm 5

In our experiments, we optimize hyper-parameters for RF by searching

the number of trees in 10, 100, 200, 500, 225 1000, 2000 and searching the

subset size of features for node splitting among sqrt, 100, 200, 500, 1000,

2000 where sqrt is the square root of the whole feature size.

Logistic regression is a kind of generalized linear model. For a binary

classification problem, with labeled sample set {(x
i

, y
i

)}N
i=1, it adds a sigmoid

function (2.7) on the linear function z(x) = w · x + b to limit the response

region in the range (0, 1) (Fig. 2.4). This response value can be intuitively
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Algorithm 5 Random Forest for Classification

1. For b = 1 to B:

a) Draw a bootstrap sample Z? of size N from the training data.

b) Grow a random-forest tree T
m

to the bootstrapped data, by re-

cursively repeating the following steps for each terminal node of

the tree, until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T
b

}M1 .

Final classification:

bC
M

rf (x) = majority vote{Ĉ
m

(x)}M1

where Ĉ
m

be the class prediction of the mth random-forest tree.
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Figure 2.4: Sigmoid function in logistic regression

interpreted as the probability of the positive prediction. With mean square

error as performance measure, the model can be optimized to minimize the

loss function(2.8).

P1(xi

) = �(z(x
i

)) =
1

1 + exp(�z(x
i

))
(2.7)

L(w) = � 1

N
[

NX

i=1

y
i

logP1(xi

) + (1� y
i

)log(1� P1(xi

)] (2.8)

In our experiments, we use the batch gradient descent algorithm with L2

regularization to train the model. The strength of regularization is searched

from 10�5 to 105, with an increment of 1 for the exponent.

Multilayer perceptron (MLP) is a feedforward neural network. It can be

viewed as a hierarchical nonlinear combination of logistic regression (Fig. 2.5).

32



www.manaraa.com

Figure 2.5: Architecture of the simplest three-layer MLP

MLP uses layerwise connected nodes to build the architecture of the model.

Each node(except for the input nodes) can be viewed as a neuron with a

nonlinear activation function. In our work, we use the simple sigmoid func-

tion(2.9) as the activation function,

�(z(x)) =
1

1 + exp(�z(x)) z(x) = w ⇤ x+ b (2.9)

where the weight vector w and bias vector b in each layer pair are trained

by the Back Propagation algorithm. We also introduce L2 regularization

weight decay to prevent overfitting. We optimize parameters for MLP by

searching the hidden layer size in {2, 3}, the hidden unit size in {0.0625*m,

0.125*m, 0.25*m} where m is the feature size 2538, and searching the weight

decay strength among {0.0005, 0.0001, 0.00001, 0.0}.
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Support vector machines (SVM) is one of the most influential approaches

to supervised learning (Boser et al., 1992; Cortes and Vapnik, 1995). It is also

one of the most widely used classifiers in medical image analysis [3, 7, 14, 15].

Similiar to Logistic Regression, it employs a linear funtion wTx+b. But unlike

Logistic Regression, SVM originally does not provide a probability outcome.

It outpus 0 or 1 to indicate the final classification result directly.

The underlying geometrical idea is to find a hyperplane maximizing the

margin to support vectors. The support vectors are those sample vectors

which are closest to the hyperplane. So the model chooses optimal hyper-

plane completely decided by the support vectors. In other words, the choice

hyperplane will not be influenced by those sample vectors far away from the

hyperplane. Since the hard margin is usually not accessible, it allows soft

margin which allows more sample vectors to becomes support vectors. When

the original feature space is almost separable (without using kernal method),

the target to optimize is

min
w,b

1

2
kwk2+C

NX

i=1

"
i

s.t. 8i, "
i

� 0, y⇤(hw, xi+b) � 1�"
i

(2.10)

It can be transferred equivalently to the form

min
w,b

1

2
kwk2 + C

NX

i=1

max(0, 1� y ⇤ (hw, xi+ b))) (2.11)
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Figure 2.6: Illustration of logistic loss and hinge loss

The first term is a traditional l2 regularization. And the second term

is called high loss. Compared with logistic regression, from the perspective

of optimization process, we can find the largest di↵erence between them is

the choice of loss function. Fig. 2.6 shows the similarity and di↵erence in an

intuitive way.

One key innovation associated with support vector machines is the ker-

nel trick. The kernel trick consists of observing that many machine learning

algorithms can be written exclusively in terms of dot products between ex-

amples. For example, the linear function used in support vector machine can
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be transferred to the format

w · x+ b =
NX

i=1

↵
i

x · x(i) + b =
NX

i=1

↵
i

hx, x(i)i+ b (2.12)

where x(i) is a training sample and ↵ is a vector of coe�cients. The

hx, x(i)i represents the inner product of vectors x and x(i). The idea of kernel

method is to apply a kernel function k(x, x) = h�(x),�(x(i))i on the inner

product part. Then the former linear function becomes

z(�) =
NX

i=1

↵
i

· h�(x),�(x(i))i+ b (2.13)

We can see the new function z is nonlinear to x and linear to �(x) and ↵.

So under this process, we can transfer our original feature space to another

feature space (often a higher dimensional space) and apply the linear function

in a similar way as in the original feature space. With the inner product part

being computed ahead of time, this method is also relatively computational

e�cient. So the kernel method assists the support vector machine to solve

those nonlinearly separable problems e↵ectively and e�ciently.

There are several kinds of kernel functions. Those most commonly used

in SVM are:
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k(x, x) =

8
>>>>>>>>>><

>>>>>>>>>>:

x · x(i) Linear

(� · x · x(i) + b)d Polinomial

exp(�� ·
��x� x(i)

��2) Gaussian(RBF )

tanh(�x · x(i) + C) Sigmoid

(2.14)

In our experiments, we find liner kernel is better than others and optimize

the hyper-parameter C. Let C = 2m, we search m in the range [-8, 9] with a

step increment of 1.

k-Nearest Neighbors (kNN) is one of the most common lazy classifiers,

which classifies a new instance by a majority vote of its k nearest neighbors.

In this paper, we use the Euclidean distance metric to find the k nearest

neighbors. We search the optimal k value for our task in the range [1, 50]

with a step increment of 1.
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Chapter 3

Cervigram Image Analysis

Here we have a task that taking cervigram images as input, we need build

a system which is able to predicting the corresponding CIN level. This task

can be viewed as a supervised learning problem and since the value of CIN

level is in discrete space, it is a classification problem.

The raw image data is in a quite high dimension. The information each

pixel in an image can represent is limited, which is not suitable for applying

traditional machine learning models directly. Fortunately, in the area of

computer vision and image processing, there are various mature technologies

and tricks that can be used to analyze an image. As we have mentioned

before, the machine learning is not a magic. It should be designed to make
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fully use of existed experience and human beings’ knowledge about the task.

We design a type of pyramid features. From each image, three com-

plementary pyramid features are extracted, including Pyramid histogram

in L*A*B* color space (PLAB), Pyramid Histogram of Oriented Gradients

(PHOG), and Pyramid histogram of Local Binary Patterns (PLBP). With

these sets of high-level features, we apply machine learning methods to this

classification task. As we know, there is no universally best machine learning

method for any tasks in general. We are interested in what kind of machine

learning methods are more suitable for our problems in medical image anal-

ysis.

The seven classifiers introduced in section 2 are chosen to evaluate their

performance on this task. We train binary classifiers to separate CIN1/Normal

and CIN2/3+ images. All the classifiers are trained and tested on the same

dataset, with a uniform parameter optimization strategy. They are then

compared by ROC curves and other evaluation measures.

On the same dataset, our lower-cost image-based classifiers can perform

comparably or better than human interpretation on other traditional screen-

ing results, such as Pap tests and HPV tests.
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3.1 Cervigram Image Database

For our image-based CIN classification problem, here we first introduce the

dataset we used, built from a large medical data archive collected by the

National Cancer Institute (NCI) in the Guanacaste project [16]. The archive

consists of data from 10,000 anonymized women, and the data is stored in

the Multimedia Database Tool (MDT) developed by the National Library of

Medicine [17]. In the archive, each patient typically had multiple visits at

di↵erent ages. During each visit, multiple cervical screening tests including

Cervicography were performed. The Cervicography test produced two cervi-

gram images for a patient during her visit and the images were later sent to

an expert for interpretation.

In our dataset, we collected 1112 patient visits, 345 positive (CIN2/3/cancer)

and 767 negative (CIN1/Normal). For each patient, the ground truth diag-

nosis is based on the Worst Histology result of that patient visit: multiple

expert histology interpretations were done on each biopsy; the most severe

interpretation is labeled the Worst Histology for that visit in the database.

Note that our dataset is imbalanced, i.e. it contains more negative cases

than positive cases. Since many classification methods assume a balanced

distribution of classes and require additional strategies to handle imbalanced
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Figure 3.1: Illustration of visual observations in cervigrams

data, we apply undersampling to the negative visits and randomly choose

345 negative visits from each dataset. In our work, we use this balanced

sub-dataset, including all 345 positive visits and the randomly selected 345

negative visits.

Interpretations based on cervigram images have been shown to be an

e↵ective way to detect CIN2/3+ [3]. Some of the most important visual ob-

servations in cervigrams include the acetowhite region, and features within

that region, such as mosaicism, punctation, and atypical vessels; it is im-

portant to distinguish these possibly disease-related features from benign

features such as polyps or cysts. Fig. 3.1 shows some example images of

those observations [18]. To robustly identify these characteristics which are

helpful for diagnosis, we propose a type of hand-crafted pyramid features.

41



www.manaraa.com

3.2 Feature Extraction

With the technology of computer vision and image analysis, we get a way

to represent our knowledge about the image data in the format of a high di-

mensional feature space. We extract multi-scale pyramid histogram features

to encode the statistical appearance information in cervigrams, as shown

in Fig. 3.2. First, we isolate the cervix region of interest (ROI) from the

input image and resize it to 300*250 pixels. We use the method proposed

in [3] to segment the ROI. Second, we transform the ROI image patch into

di↵erent types of feature maps, including the local binary pattern (LBP)

map, L*A*B color channels, and the image gradient maps. Third, a spatial

pyramid of sub-regions is constructed for each feature map. Based on these

constructed pyramids, pyramid LBP (PLBP), pyramid LAB (PLAB) and

pyramid Histogram of Oriented Gradients (PHOG) features are extracted

and concatenated to be a multi-feature descriptor.

3.2.1 Color Feature

Color plays an important role in cervical lesion classification, because one of

the most important visual features on the cervix that have relevant diagnostic

properties is the presence of Acetowhitened regions. Thus, the color feature
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Figure 3.2: Image features extraction

is widely used in cervigram analysis [2, 7, 12]. We calculate the L*A*B

color channels as our color feature maps. Then, to capture edge and shape

information on a cervix, we calculate the gradient map, which is shown to

be complementary to the color feature [2, 7].

3.2.2 Texture Feature

In addition to the color and gradient features, we introduce a local binary

pattern (LBP) feature that extracts local texture characteristics for cervical

lesion classification. Ojala et al. [19] first introduced LBP and showed its

powerful ability for texture classification. In a local neighborhood of an

input image, given a pixel (x
c

, y
c

) which is surrounded by 8 neighbors, we
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can calculate its LBP value by Eq. 3.1,

LBP (x
c

, y
c

) =
7X

p=0

s(i
p

� i
c

) · 2p (3.1)

Where i
c

indicates the grayscale value of the center pixel (x
c

, y
c

); i
p

cor-

responds to the grayscale value of the pth neighbor. s(x) is a sign function

where s(x) = 1, if x � 0; else, s(x) = 0.

Later, several extensions of the original LBP operator were presented [20].

First, the LBP was extended to a circular neighborhood of di↵erent radii,

denoted as LBP
P,R

which refers to P equally spaced pixels on a circle of

radius R. Furthermore, the rotation invariant local binary pattern is defined

in Eq. 3.2,

LBP ri

P,R

= min
i

{ROR(LBP
P,R

, i)}P�1
i=1 (3.2)

Where ROR(LBP
P,R

, i) performs a circular bitwise right shift on the P-

bit LBP
P,R

, for i number of times.

To obtain the LBP map, we compute the LBP ri

P,R

value for each pixel in

the input image. Because of the neighborhood constraints when capturing

LBP
P,R

features, pixels on the boundary of the input image within the R

range do not have any LBP values. We set those pixels values to be zeros or
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to be their closest neighbors LBP values.

In our work, we use LBP ri

8,1 . There is no need to use LBP with other

radii because our pyramid histogram LBP feature (PLBP) can encode a

multi-scale local binary pattern.

As Fig. 3.1 shows, we construct a spatial pyramid for each feature map.

A pyramid is constructed by splitting the image into rectangular sub-regions,

increasing the number of regions at each level, i.e., level 0 has 1 sub-region;

level 1 has 4 sub-regions; level 2 has 16 sub-regions, and so forth. Histogram

features are extracted within these pyramid sub-regions. The extracted pyra-

mid histogram encodes the statistical distribution of feature values at di↵er-

ent positions and scales in cervigrams.

For the PLBP feature, the total number of bins is 10 for the histogram of a

subregion. A 4-level of pyramid is constructed resulting in a PLBP histogram

feature that has 850 dimensions. For the PLAB feature, we extract 3 pyramid

levels with a 16-bin histogram for each channel in L*A*B color space in each

subregion. Thus, the PLAB color feature has 1,008 dimensions. In the gradi-

ent map, we calculate pyramid histogram of oriented gradients (PHOG). An

8-bin orientation histogram over 4 levels is used. Hence, the total vector size

of our PHOG feature is 680. Finally, we construct a multi-feature descriptor
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by concatenating the three di↵erent types of features, PLBP-PLAB-PHOG.

Thus, this handcrafted multi-feature descriptor has a vector size of 2,538.
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Chapter 4

Experiments

In Section 3.1, we described the construction of two cervigram image datasets,

D1 and D2, where each one contains 345 images from positive (CIN2/3+)

patient visits and 767 images from negative (CIN1/normal) patient visits.

Note that the datasets are imbalanced, i.e. they contain more negative cases

than positive cases. Since many classification methods assume a balanced

distribution of classes and require additional strategies to handle imbalanced

data, we apply undersampling to the negative visits and randomly choose 345

negative visits from each dataset. The resulting two balanced datasets, Dbal
1

and Dbal
2 , use all 345 positive visits and the randomly selected 345 negative

visits.
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We conduct experiments to compare the seven classifiers described in

Section 2.7, on the two balanced datasets Dbal
1 and Dbal

2 , and on the two

larger imbalanced datasets, D1 and D2. The classifier implementations we

use are from well known open source libraries. Our Random Forest, GBDT,

and LR classifiers are implemented with scikit-learn [21]; the MLP classifier is

provided by pylearn2 [22]; the SVM is o↵ered by Libsvm [23]; the AdaBoost

is provided by Appel et. al. [24]; and the kNN classifier is provided by the

implementation in MATLAB.

We perform the same ten-round ten-fold cross validation using these seven

classifiers. On each dataset, we randomly divide the samples (cervigrams)

into ten folds. In the ten rounds, we rotationally use one fold for testing

and nine folds for training. On the training set, we use a uniform strategy,

Exhaustive Grid Search [23], to search for the optimal parameters of each

classifier. Three cross validations are used in the parameter searching process.

The exact parameters and search ranges for each classifier are discussed in

the Section 3.

The results of the ten rounds are used to draw ROC curves. We compare

di↵erent classifiers by analyzing their ROC curves, areas under ROC curves

(AUC), and accuracy, sensitivity and specificity values at the point where the
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probability threshold is 0.5. We also compare the results of our image-based

classifiers with several other screening tests results, obtained for the same

visits that are used to construct our datasets.

Table 4.1: Overall AUC and accuracy (accu), sensitivity (sensi) and specificity (speci)

at the default threshold on the balanced dataset Dbal
1 and the imbalanced dataset D1

Dbal

1 D1

Classifier AUC(%) accu(%) sensi(%) speci(%) AUC(%) accu(%) sensi(%) speci(%)

RF 84.82 80.00 84.06 75.94 84.83 78.24 67.54 83.05

GBDT 84.30 78.55 82.03 75.07 82.28 77.07 62.61 83.57

AdaBoost 82.23 76.81 77.68 75.94 82.53 76.44 57.97 84.75

SVM 78.95 74.78 76.52 73.04 79.82 74.37 46.67 86.83

LR 77.99 74.20 76.23 72.17 79.99 75.45 54.20 85.01

MLP 77.10 75.27 77.78 72.75 78.60 76.53 59.13 84.35

kNN 73.00 70.87 75.07 66.67 74.38 71.67 48.12 82.27

4.1 On Balanced Datasets

In our first set of experiments, we compare seven classifiers on the balanced

dataset Dbal
1 and Dbal

2 . The comparison results are shown in Fig. 4.1 as

ROC curves and in Table 4.1 with overall AUCs, and accuracy, sensitivity
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and specificity values at the default probability threshold 0.5. The ROC

curves illustrate that the three ensemble-tree models RandomForest (RF),

GBDT, and AdaBoost outperform other classifiers. AUCs in 4.1 also show

that the ensemble-tree models have a better overall performance. At the

5% significance level, there is no di↵erence between RandomForest, GBDT

and AdaBoost. On Dbal
1 , for instance, the p � value is 0.0708 by paired t-

test between RF (1st rank) and AdaBoost (3rd rank). However, these three

ensemble-tree classifiers are significantly better than all other classifiers. On

Dbal, the p� value is 0.0062 and 1.7191 * 10�4, by paired t-test between RF

(1st rank) and SVM (4th rank), and between RF and kNN (lowest rank),

respectively. We conjecture that the ensemble-tree models perform best be-

cause they are more robust to over-fitting than other models such as SVM

and MLP when dealing with scalar data sets that are not too large.

4.2 On Imbalanced Datasets

We also conduct the same ten-round ten-fold experiments on the imbalanced

datasets D1 and D2. The results are shown in Fig. 4.2 and Table 4.1. One

clear di↵erence between results on the imbalanced datasets and those on the
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(a) ROC curves on Dbal
1 (b) ROC curves on Dbal

2

Figure 4.1: ROC curves on balanced datasets Dbal
1 and Dbal

2 .

balanced datasets is that, at the same default threshold, all seven classifiers

give higher specificity values and lower sensitivity values on the imbalanced

dataset (see Table 1, right column). This is expected since in the imbalanced

datasets, there are more negative samples than positive samples, thus when

penalizing equally errors on samples from any class and training to minimize

the overall classification error, the classifiers trained on the imbalanced data

become biased to the class with a majority of samples. Interestingly, since

higher specificity is a desired property for a clinical test meant for screening,

training classifiers on the imbalanced dataset (which more closely reflect the

true underlying patient distribution) can be beneficial. Moreover, Fig. 4.2

shows that the overall ROC curves and AUCs on the imbalanced datasets

are similar to that on the balanced datasets. Although more samples are
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(a) ROC curves on D1 (b) ROC curves on D2

Figure 4.2: ROC curves on imbalanced datasets D1 and D2.

used to train classifiers on the imbalanced datasets, the overall performance

by the classifiers did not seem to improve.

4.3 Cervigram Based RandomForest vs. Pap

and HPV Tests

In this experiment, we first compute the average result of our image-based

classifier RF to represent its visit-level performance on balanced and imbal-

anced datasets, respectively. We then compare the visit-level result of RF

with Pap and HPV tests results, which are available for the same visits that

are used to construct our datasets. As illustrated in Table 4.2, on both

datasets the image-based RF classifier outperforms every single Pap test or
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Table 4.2: Comparing visit-level sensitivity (sensi) and specificity (speci) of image-based

RF classifier with that of Pap tests and HPV tests.

Balanced dataset Imbalanced dataset

Method sensi(%) speci(%) sensi(%) speci(%)

Alfaro ThinPrep 20.69 81.82 20.69 85.27

Cytyc ThinPrep 49.55 88.46 49.55 89.77

Costa Rica Pap 39.42 88.12 39.42 89.31

Hopkins Pap 36.00 97.11 36.00 97.13

HPV16 33.82 94.19 33.82 92.49

HPV18 08.16 97.97 08.16 98.17

Cervigram based RF 51.00 90.00 49.00 90.00

HPV test at specificity around 90%.
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Chapter 5

Conclusion and Future Work

In our work, we treat the problem of cervigram image analysis as a machine

learning classification task and apply several popular machine learning al-

gorithms to make predictions about the CIN level. From our experiments,

it has been shown that machine learning is a useful tool to deal with this

problem.

We also make a comprehensive comparison among several popular ma-

chine learning classifiers to figure out which one might be a suitable model

for this kind of problem. We use ROC curve and the AUC score as the final

performance measure. From the results we get, we find that ensemble-tree

models—Random Forest, Gradient Boosting Decision Tree, and AdaBoost—
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outperform other classifiers such as multi-layer perceptron, SVM, logistic

regression and kNN, on this task. This finding is consistent with the con-

clusion in other works [25]. Another finding is that, training and testing

on the larger imbalanced dataset (containing more negative samples) give

similar overall performance (measured by AUC and accuracy) to that on

the balanced dataset (with equal number of negative and positive samples).

However, the results on the imbalanced dataset have higher specificity than

sensitivity whereas the results on the balanced dataset have higher sensitivity.

We have also tried some simple ensemble strategies to combine a subset

of the result of these seven classifiers, but it seems not to give a signifi-

cant improvement on the performance. We think that some feature selection

methods can be applied to improve the performance. Feature extraction tech-

niques might also provide more useful information. Technologies for dealing

with imbalanced data like oversampling can be applied to the whole data

set. Based on large set of unlabeled data set in the original database, semi-

supervised learning can also be considered a potential method to make im-

provements in the future work. We believe the machine learning methods

can be applied to other medical image analysis problems. We hope to try

our methods on other datasets to hunt for more general outcomes.

55



www.manaraa.com

56



www.manaraa.com

Bibliography

[1] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C.,

Byers, A.H.: Big data: The next frontier for innovation, competition,

and productivity. (2011)

[2] WHO: Human papillomavirus and related diseases in the world. (2015)

[3] Kim, E., Huang, X.: A data driven approach to cervigram image analysis

and classification. In: Color Medical Image analysis, Lecture Notes in

Computational Vision and Biomechanics. Volume 6. (2013) 1–13

[4] Sankaranarayanan, R., Ga�kin, L., Jacob, M., et al.: A critical assess-

ment of screening methods for cervical neoplasia. International Journal

of Gynecology and Obstetrics 89 (2005) 4–12

[5] Biscotti, C.V., Dawson, A.E., et al.: Assisted primary screening using

the automated thinprep imaging system. In: AJCP. Volume 123(2).

57



www.manaraa.com

(2005) 281–287

[6] Wilbur, D.C., Black-Scha↵er, W.S., Lu↵, R.D., Abraham, K.P., Kem-

per, C., Molina, J.T., Tench, W.D.: The becton dickinson focalpoint gs

imaging system. American Journal of Clinical Pathology 132(5) (2009)

767–775

[7] Zhang, J., Liu, Y.: Cervical cancer detection using svm based feature

screening. In: MICCAI. Volume 3217. (2004) 873–880

[8] Mitchell, T.M., et al.: Machine learning. wcb (1997)

[9] Ian Goodfellow, Y.B., Courville, A.: Deep learning. Book in preparation

for MIT Press (2016)

[10] Wolpert, D.H.: The lack of a priori distinctions between learning algo-

rithms. Neural computation 8(7) (1996) 1341–1390

[11] Domingos, P.: A few useful things to know about machine learning.

Communications of the ACM 55(10) (2012) 78–87

[12] Hastie, T., et al.: The elements of statistical learning. Volume 2.

Springer (2009)

58



www.manaraa.com

[13] Caruana, R., Niculescu-Mizil, A.: An empirical comparison of super-

vised learning algorithms. In: ICML, ACM (2006) 161–168

[14] Morra, J.H., Tu, Z., Apostolova, L.G., et al.: Comparison of adaboost

and support vector machines for detecting alzheimer’s disease through

automated hippocampal segmentation. In: Medical Imaging. Volume 29.

(2010) 30–43

[15] Osareh, A., Mirmehdi, M., et al.: Comparative exudate classification us-

ing support vector machines and neural networks. In: MICCAI. Springer

(2002) 413–420

[16] Herrero, R., Schi↵man, M., Bratti, C., et al.: Design and methods

of a population-based natural history study of cervical neoplasia in a

rural province of costa rica: the guanacaste project. Rev Panam Salud

Publica 1 (1997) 362–375

[17] Jeronimo, J., Long, L.R., Neve, L., Michael, B., Antani, S., Schi↵man,

M.: Digital tools for collecting data from cervigrams for research and

training in colposcopy. Journal of Lower Genital Tract Disease 10(1)

(2006) 16–25

59



www.manaraa.com

[18] Song, D., Kim, E., Huang, X., et al: Multi-modal entity coreference for

cervical dysplasia diagnosis. In: Medical Imaging, IEEE (2014)
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and rotation invariant texture classification with local binary patterns.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 24(7)

(2002) 971–987

[21] Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research 12

(2011) 2825–2830

[22] Goodfellow, I.J., Warde-Farley, D., Lamblin, P., et al.: Pylearn2: a

machine learning research library. arXiv:1308.4214 (2013)

[23] Chang, C., Lin, C.: LIBSVM: a library for support vector machines

(2001)

60



www.manaraa.com

[24] Appel, R., Fuchs, T., Dollr, P., Perona, P.: Quickly boosting decision

trees pruning underachieving features early. In: ICML. (2013)

[25] Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we

need hundreds of classifiers to solve real world classification problems?

The Journal of Machine Learning Research 15(1) (2014) 3133–3181

61



www.manaraa.com

Biography

Cheng Xin was born on September 5th 1990, in Shanghai, China. He has

received his Bachelor of Engineering, in Software Engineering, from Tongji

University. Upon completion of his bachelor studies, he joined Lehigh Univer-

sity to pursue his master of science degree in Computer Science. His research

interests include machine learning, deep learning, data mining, computer vi-

sion and applied topology.

62


	Lehigh University
	Lehigh Preserve
	2016

	Machine Learning Techniques for Cervigram Image Analysis
	Cheng Xin
	Recommended Citation


	tmp.1498661647.pdf.jXdT0

